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Abstract

Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met
polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this
neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF
polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we
examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a
sample of male Vietnam combat veterans (n= 156) consisting of a frontal lobe lesion group with focal penetrating head
injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability
before TBI. However, we found substantial average differences between these groups in general intelligence (< half a
standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working
memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met
genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.
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Introduction

Traumatic Brain Injury (TBI) is a global public health epidemic.

In the US alone, more than 3 million people sustain a TBI

annually. It is one of the most disabling injuries as it results in

motor and sensory deficits as well as severe cognitive, emotional,

and psychosocial impairment. Fueled by the recognition of TBI as

the ‘‘signature injury’’ in our wounded soldiers in Iraq and

Afghanistan and its often devastating impact on athletes playing

contact sports, interest in TBI has increased exponentially.

Unfortunately, despite increased awareness of its detrimental

consequences, there has been little progress in developing effective

TBI interventions. Following TBI, the brain attempts to activate

repair mechanisms and stimulate neuroregeneration, which may

be facilitated by the presence of a unique family of neurotrophic

factors, including nerve growth factor, glia-derived neurotrophic

factor, neurotrophin-3, and brain-derived neurotrophic factor

(BDNF). In this study, we build upon our prior work [1,2] by

investigating the relationship between variations in the BDNF

gene and preservation of general intelligence in the prefrontal

cortex (PFC) after TBI. Damage to the PFC leads to impairment

in executive function, which normally allows individuals to

effectively engage in complex goal-directed behaviors, whereas

the domains of perception and language are more often preserved

[3].

BDNF has emerged as a major regulator of synaptic connec-

tions [4], synaptic plasticity [5,6], and neural survival and growth

[7,8]. Within the BDNF gene, a distinct haplotype containing a

frequent single-nucleotide polymorphism (SNP), located at nucle-

otide 196 (dbSNP rs6265), produces a G-to-A substitution, which

results in a valine-to-methionine (Val66Met) substitution at codon

66 in the propeptide of the BDNF molecule [9,10]. This SNP

alters the intracellular tracking and packaging of pro-BDNF,
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affecting the regulated secretion and neuroplastic effect of mature

BDNF [11].

The Val66Met BDNF polymorphism has been linked to

cognitive functioning and clinical pathology [12]. In healthy

populations, the methionine (Met) allele has been linked to

impaired episodic memory, working memory, and hippocampal

function [11,13–16], although a recent study showed a functional

advantage for the Met allele when cognitive control, such as

response inhibition, is required [17]. Furthermore, the Met allele

has been associated with lower hippocampal levels of N-

acetylaspartate [11] and less gray matter volume throughout the

PFC and middle temporal lobes as well as limbic structures such as

the amygdala [16,18–20]. In clinical populations, the Met allele

has been associated with a wide range of neurodegenerative and

psychiatric disorders such as Alzheimer’s disease [21–23] and

bipolar disorder [24,25], arguing that a common clinical symptom

of these disorders is a varying degree of impairment in higher

cognitive abilities [26,27].

To our knowledge, the way in which the Val66Met BDNF

polymorphism affects the preservation of general intelligence after

TBI has not been systematically examined. Recent evidence

suggests that this approach can be productively applied to

understand recovery of executive function [1] and cognitive

performance following TBI [28], and motivates the present more

comprehensive investigation of general intelligence. A central aim

of the current effort is to investigate the way in which the

Val66Met BDNF polymorphism affects the preservation of specific

facets of human intelligence, advancing prior research by

administering a comprehensive assessment of general intelligence

and applying latent variable modeling to examine key facets of

intellectual ability (i.e., verbal comprehension, perceptual organi-

zation, working memory, and processing speed). Here, we

genotyped a sample of male Vietnam combat veterans with focal

penetrating TBI and administrated the Wechsler Adult Intelli-

gence Scale to examine specific competencies for general

intelligence. Importantly, veterans with different genotypes did

not show any difference in general intelligence before TBI.

Materials and Methods

Participant Data
Participants were drawn from the Phase 3 Vietnam Head Injury

Study (VHIS) registry, which includes American male veterans

who all suffered brain damage from penetrating head injuries in

the Vietnam War (n=171). This study was approved by the

National Naval Medical Center Institutional Review Board and, in

accordance with stated guidelines, all subjects read and signed

informed consent documents. Since our participants have had an

injury that may have impaired their ability to think clearly and

make decisions, we ask that they travel with a primary caregiver

and name them as a Durable Power of Attorney for research and

medical care at NNMC. Phase 3 testing occurred between April

2003 and November 2006.

Genotyping
156 participants were genotyped for the single-nucleotide

(G196A) polymorphism (SNP) of the BDNF gene that is located

on chromosome 11p13 [33]. The Val66Met polymorphism of the

BDNF gene (dbSNP identifier: rs6265; GenBank accession

number 2174122) is a G-to-A substitution, which results in

replacement of the Val at codon 66 of the BDNF protein by Met.

Individuals who are G/G homozygous produce only the Val-

containing isoform of the proBDNF protein, A/A homozygous

individuals produce only the Met-containing isoform of proBDNF,

and G/A heterozygous individuals produce both protein isoforms.

Note that groups with Met/Val and Met/Met genotypes were

combined for statistical analyses into a Met/2 BDNF group

(frontal lobe lesion group: Val/Val = 97, Val/Met = 56, Met/

Met = 3), since the frequency of the Met/Met genotype was low

and the Met/Met-containing BDNF molecules are functionally

equivalent to Met/Val BDNF proteins [9].

Genomic DNA was isolated from blood leukocytes using a

Nucleon BACC2 kit according to the manufacturer’s protocol (GE

Healthcare Life Science). Quality and quantity of genomic DNA

were determined spectrophotometrically using the absorbance

reading at 260 and 280 nm. Some DNA samples were repurified

by incorporating an additional phenol/chloroform (24:1 v/v)

extraction before recovery by ethanol precipitation. DNA

concentrations were measured using a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies). The completion

rate of each assay was .99%, with an error rate of ,1%.

Val66Met BDNF genotypes at rs6265 were determined using a 59-

exonuclease allelic discrimination (TaqMan) assay using Reference

SNP ID: rs6265 (ABI Assay on Demand C_11592758_10; Applied

Biosystems), on an ABI7900 instrument. Genotyping error rate for

this assay was determined by replicate genotyping of samples and

was ,0.005.

Participants were also genotyped for the catechol-O-methyl-

transferase (COMT) Val158Met polymorphism (GenBank acces-

sion no. Z26491) that has also been associated with the modulation

of executive functioning [34,35]. A 59 nuclease assay using

fluorogenic detection probes was performed based on the G1947A

single nucleotide polymorphism within exon 4 of theCOMTgene

(NCBI nucleotide accession number Z26491), corresponding to

codon 158 of the COMT gene (NCBI accession number

BC011935). The detection oligonucleotide sequences were as

follows: 59-Fam6-CCTTGTCCTTCAcGCCAGCGA-TAMRA-

39 (Val158 detection probe) and 59-Vic-AC-

CTTGTCCTTCAtGCCAGCGAAAT-TAMRA-39 (Met158 de-

tection probe). FAM is 6-carboxyfluorescein, and TAMRA is 6-

carboxytetramethylrhodamine. The variant nucleotide in each

detection probe is shown in lowercase. The oligonucleotide

primers used for amplification were 59-TCGAGATCAACCCC-

GACTGT-39 (forward) and 59-AACGGGTCAGGCATGCA-39

(reverse). Target DNA amplification, fluorescence measurements,

and allele discrimination were accomplished using a ABI 7900

Sequence Detection System (Applied Biosystems).

Lesion Analysis
CT data were acquired during the Phase 3 testing period. Axial

CT scans without contrast were acquired at Bethesda Naval

Hospital on a GE Medical Systems Light Speed Plus CT scanner

in helical mode (150 slices per subject, field of view covering head

only). Images were reconstructed with an in-plane voxel size of

0.460.4 mm, overlapping slice thickness of 2.5 mm, and a 1 mm

slice interval. Lesion location and volume were determined from

CT images using the Analysis of Brain Lesion software [36,37]

contained in MEDx v3.44 (Medical Numerics) with enhancements

to support the Automated Anatomical Labeling atlas [38]. Lesion

volume was calculated by manual tracing of the lesion in all

relevant slices of the CT image then summing the traced areas and

multiplying by slice thickness. A trained neuropsychiatrist

performed the manual tracing, which was then reviewed by an

observer who was blind to the results of the neuropsychological

testing. As part of this process, the CT image of each subject’s

brain was spatially normalized to a CT template brain image. This

template was created by spatial normalization of a neurologically

healthy individual’s CT brain scan to MNI space using the
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Automated Image Registration program [39]. Lesion overlap

maps for patients with the Val/Val or Val/Met genotypes are

illustrated in Figures 1 and 2, respectively. Demographic and

background data for the Val/Val and Val/Met patient groups are

reported in Table S1 (see also [29–32]). No effects on test

performance were observed in these patient groups on the basis of

demographic variables (e.g., age, sex, ethnicity, years of education,

and lesion size; see also [28]). A direct comparison of brain regions

damaged in the Val/Val versus Val/Met genotypes is illustrated in

Figure 3. The profile of brain damage among these patient groups

primarily reflects common PFC subregions (highlighted in green)

and entails the majority of damaged voxels (Val/Val = 62.02%

shared with Val/Met; Val/Met= 76.33% shared with Val/Val).

An additional analysis performed on a subset of the Val/Val

patients whose lesion maps had maximal overlap with the full Val/

Met patient group (84.94%) is reported in Table S3 and Figs. S1–

S3, and replicates the findings of this study.

Neuropsychological Tests
We administered the Wechsler Adult Intelligence Scale, 3rd

Edition (WAIS; [40]) to investigate the neural substrates of key

competencies for general intelligence.

Wechsler Adult Intelligence Scale, 3rd Edition
The WAIS-III comprises 14 subtests grouped in four first-order

factors: verbal comprehension, perceptual organization, working

memory, and processing speed. In addition, a higher-order factor

representing general cognitive ability (g) is obtained from the

variance shared by the first-order factors. Table S2 provides a brief

description of each subtest (for further details concerning their

standardization, reliability, and validity, see [40]).

Confirmatory Factor Analysis
The following measurement model was tested (Fig. 4): (1) verbal

comprehension/crystalized intelligence (VC) was assessed by

vocabulary, information, similarities, and comprehension subtests;

(2) perceptual organization/fluid intelligence (PO) was as assessed

by matrix reasoning, block design, object assembly, picture

arrangement, and picture completion subtests; (3) working

memory (WM) was measured by arithmetic, digit span, and

letter-number sequencing subtests; (4) processing speed (PS) was

measured by digit symbol coding and symbol search subtests, (5)

the higher-order factor representing general intelligence (g)

predicts the above first-order factors.

This measurement model was tested for the 171 patients using

the AMOS program [41]. Fit indexes were reasonable: x2 = 150.3,

degrees of freedom (DF) = 73, x2/DF=2.1, RMSEA=0.079,

CFI= 0.94. All the coefficients in the model were statistically

significant (p,0.01). Perceptual organization/fluid intelligence was

the first-order factor best predicted by the higher-order factor

(0.83). Nevertheless, the remaining first-order factors were also

largely predicted by g (regression weights from 0.73 to 0.77).

Latent scores were obtained from this measurement model

using the AMOS imputation algorithm. These latent scores

estimate the true (error free) ability levels measured by the WAIS-

III. Therefore, specific variance associated with each subtests is

removed. The resulting five scores (general intelligence, fluid

intelligence, crystallized intelligence, working memory, and

processing speed) were submitted to voxel-based lesion-symptom

mapping analysis.

Results

Firstly, we computed scores on general cognitive ability as

obtained from the Armed Forces Qualitication Test (AFQT)

before TBI for Val/Val (n=97) and Val/Met (n=59) genotypes.

A one-way ANOVA was computed and the average difference was

not statistically significant (F=0.364, p=0.43, effect size = 0.13).

Therefore, there were no average differences in general intelli-

gence between Val/Val and Val/Met genotypes before TBI.

Figure 1. Lesion mapping results for Val/Val genotype patients (n=97). In each axial slice, the right hemisphere is on the reader’s left.
doi:10.1371/journal.pone.0088733.g001
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Secondly, these two groups of participants were systematically

compared in the five latent scores described above. Remember

that WAIS-III scores were obtained after TBI. Again, a one-way

ANOVA was computed. Now a substantial average difference is

observed between Val/Val and Val/Met genotypes across the five

latent scores (F=14.9, 6.4, 7.2, 14, and 16.9 for g, VC, PO, WM,

and PS respectively). As Figure 5 illustrates, this average difference

ranges from 6 to 8 IQ points (around half a standard deviation

Figure 2. Lesion mapping results for Val/Met genotype patients (n=59). In each axial slice, the right hemisphere is on the reader’s left.
doi:10.1371/journal.pone.0088733.g002

Figure 3. Lesion overlap map illustrating common and distinctive brain regions for Val/Val (blue) and Val/Met (yellow) genotype
patients. Overlap between Val/Val and Val/Met genotype patients is illustrated in green. In each axial slice, the right hemisphere is on the reader’s
left.
doi:10.1371/journal.pone.0088733.g003
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using the standard scale with a mean of 100 and a standard

deviation of 15). Values for the effect size (d) corresponding to

these average differences were: 0.68 for g, 0.42 for VC, 0.44 for

PO, 0.61 for WM, and 0.68 for PS. Therefore, while there was not

a difference in general cognitive ability between both genotypes

before TBI, a substantial and statistically significant average

difference was noted after TBI. Val/Met genotypes preserved their

cognitive ability, whereas Val/Val genotypes showed scores

notably decreased.

Discussion

The present study provides compelling evidence for a relation-

ship between variations in the Val66Met BDNF polymorphism

and preservation of general intelligence after penetrating TBI. In

previous studies, the Met allele had been found to be associated

with relatively impaired cognitive functions in healthy individuals

[11,13], stroke patients [42], psychiatric populations [43,44], and

in patients recovering from mild TBI [45]. However, in this study,

we demonstrated that the Met allele is protective for general

intelligence in patients with PFC damage after TBI. Met carriers

showed preservation of general intelligence compared with Val

carriers, across all facets of intelligence, including verbal compre-

hension, perceptual organization, working memory, and process-

ing speed.

We investigated the relative contribution of the Met allele to the

preservation of general intelligence in the presence of other factors

such as age, pre-injury cognitive performance, and volume brain

loss. Pre-injury cognitive performance on the Armed Forces

Qualification Task (AFQT) was not different for Met or Val

carriers. However, correlations between AFQT scores (before

TBI) and WAIS-III scores were generally lower for Val carriers,

except for verbal comprehension. This finding indicates that

AFQT scores are better predictors of intelligence after TBI for the

Met carries than for the Val carriers. The correlation values

(AFQT and WAIS-III factors) were (Met/Val carriers): g (0.76/

0.57), verbal comprehension (0.65/0.64), perceptual organization

(0.77/0.64), working memory (0.70/0.56), and processing speed

(0.61/0.42). Moreover, the profile of brain damage for the Met

and Val carriers was comparable and did not significantly differ in

terms of total percent volume loss (see Figs. 1–3).

The present study motivates new approaches to understanding

the molecular mechanisms underlying the association of the

Val66Met BDNF gene and preservation of general intelligence

after TBI. Prior research indicates that TBI is associated with an

early up regulation of BDNF in both animal models of

experimental brain injury [46] and in individuals with severe

TBI [47]. BDNF is synthesized in the brain as a propolypeptide,

which can be processed either intracellularly or extracellularly by

intracellular cleavage to mature BDNF followed by secretion,

secretion followed by extracellular cleavage to mature BDNF, or

secretion without subsequent cleavage [48]. Because proneuro-

trophins are important for proper folding, dimerization, and

targeting of the mature neurotrophins, substituting Met for Val in

Figure 4. Summary of structural equation modeling results (n=171).
doi:10.1371/journal.pone.0088733.g004
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proBDNF results in defective intracellular protein trafficking,

packaging, and regulated secretion [9,11].

ProBDNF and mature BDNF have two distinct receptors and

signaling cascades resulting in opposing effects on the nervous

system [48]. Whereas mature BDNF binds with high affinity to the

TrK B receptor tyrosine kinases (TrkB) and insures cell survival

[49], proBDNF binds with high affinity to the multifunctional p75

neurotrophin receptor (p75NTR) and triggers apoptosis [50,51].

Importantly, proneurotrophins are upregulated in pathological

conditions such as brain injury [48]. Particularly, proBDNF is

secreted by neurons and glial cells [9,51], when cell death prevails

after brain trauma [52,53]. After injury, p75NTR and many

binding partners are dynamically regulated and produce unique,

multimeric receptor complexes. One such binding partner is

sortilin, which specifically binds the prodomain of BDNF and

serves as a coreceptor with p75NTR in mediating cell death [54].

For example, when the interaction between proBDNF and

sortilin/p75NTR was blocked by sortilin (a protein that is a

member of the recently discovered family of Vps10p-domain

receptors) antagonists, the apoptotic actions of proBDNF on

cultured sympathetic neurons were abolished [51]. Moreover,

lesioned corticospinal neurons with lower sortilin expression were

more likely to survive the injury [55]. By extension, the reduced

secretion of proBDNF Met because of impaired intracellular

trafficking represents a plausible molecular model for protecting

individuals with the Met allele, especially in situations when a

substantial subpopulation of neurons is undergoing cell death as

may occur in TBI (see also [9]). Future molecular and cellular

studies on the regulation of proBDNF secretion after neuronal

injury will be required to verify this proposed molecular

mechanism.

Other recent research supports our observation for cognitive

preservation by carriers of the Met allele. A recent study in healthy

individuals revealed a positive effect of the Met allele for a

cognitive control function, namely response inhibition [17].

Furthermore, the presence of the Met allele was associated with

reduced cognitive decline in patients with multiple sclerosis [56] or

systemic lupus erythematosus [57]. In addition, accumulating

evidence in human lesion patients on the Val66Met BDNF

polymorphism and cognitive function indicates that the Met allele

exerts a protective effect for executive function [1] and cognitive

performance following TBI [28]. Finally, recent meta-analyses of

population-based case control studies on the Val66Met BDNF

polymorphism and mental disorders revealed that the Met allele

exerts a protective effect for substance-related disorders [26] and

results in decreased neuroticism as a vulnerability trait for anxiety

[27]. Thus, the weight of evidence suggests that the functional

effect of the Met allele may vary between cognitive functions and

brain regions under normal and pathological conditions. Recent

findings further indicate that the Val66Met BDNF polymorphism

does not capture all of the functionally important genetic variation

in cognitive performance following TBI and emphasize the

importance of investigating additional BDNF SNPs [45].

There are a number of limitations of the current study. First, in

any investigation attempting to link a gene with a discrete change

in cognitive function or pathology, it is often unclear how different

genotypes lead to altered phenotypes. Instead of an identified

genetic variant having a direct effect on executive function, it is

plausible that the genetic variation mediates its effect(s) through a

downstream functional change or through the regulation of some

other gene. Thus, future genotyping studies are necessary to

explore whether the preservation process may be mediated by

other candidate genes such as those from the neurotrophic factor

Figure 5. Wechsler Adult Intelligence Scale latent scores. g = general intelligence, VC = verbal comprehension, PO = perceptual organization,
WM = working memory, PS = processing speed, * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0088733.g005
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and TrK receptor families (see also [45]). Second, given that our

performance measures were determined 30 years after TBI in

participants generally in their late 50s, a number of long-term

changes in BDNF expression, directly, or indirectly, could

potentially impact executive function. For example, neuroprotec-

tive gene expression is altered in the elderly: TrkB mRNA levels

are reduced markedly in all portions of cortex [58]. In addition,

although changes in brain levels of apoptotic genes such as

p75NTR remain unchanged through adulthood, sortilin levels

increase with age, suggesting a mechanism that could shift the

balance to neurodegeneration with increasing age [59]. In the

future, longitudinal studies starting shortly after a TBI are needed

to explore the long-term molecular and cellular basis of the

Val66Met BDNF polymorphisms on potential recovery of

executive function and other cognitive domains. Finally, although

the Val/Val and Val/Met genotype groups in the present study

entail a similar profile of brain damage (Fig. 3; highlighted in

green) and the findings replicate when a subset of patients with

maximal lesion overlap in the Val/Val and Val/Met genotype

groups are compared (Table S3 and Fig. S1–S3), it remains

possible that subtle differences in the location of cortical damage

across these patient groups contribute to the observed differences

in general intelligence following TBI (Fig. 3 and Fig. S2; regions

highlighted in blue and yellow, respectively).

In conclusion, our findings provide novel evidence for a

relationship between the Met allele and the preservation of

general intelligence after penetrating TBI, supporting a protective

effect for specific competencies of psychometric g, including verbal

comprehension, perceptual organization, working memory, and

processing speed. For current clinical application, earlier triage

and extended cognitive rehabilitation is recommended for carriers

of the Val/Val allele to facilitate the best possible long-term social

and vocational outcomes for patients with PFC damage after TBI.

Supporting Information

Figure S1 Lesion mapping results for Val/Val focal
genotype patients (n=59). In each axial slice, the right

hemisphere is on the reader’s left.

(TIFF)

Figure S2 Lesion overlap map illustrating common and
distinctive brain regions for Val/Val Focal (blue) and
Val/Met (yellow) genotype patients. Overlap between Val/

Val Focal and Val/Met genotype patients is illustrated in green. In

each axial slice, the right hemisphere is on the reader’s left.

(TIFF)

Figure S3 Mean performance for Wechsler Adult Intel-
ligence Scale latent scores for a subset of 59 Val/Val
patients that share 84.98% of its voxels with the full Val/
Met patient group. g = general intelligence, VC= verbal

comprehension, PO=perceptual organization, WM=working

memory, PS= processing speed.

(TIFF)

Table S1 Demographic and background data. Note:

‘‘Age’’ refers to age at the time of Phase 3 evaluation. ‘‘Ethnicity’’

refers to the percentage of Caucasian veterans. ‘‘Sex’’ refers to the

percentage of male veterans. ‘‘Years of education’’ refers to the

total number of years of education the veterans completed. ‘‘Total

percent volume loss’’ refers to the total percent volume loss due to

brain damage in cm3.

(TIFF)

Table S2 Description of intelligence measures of the
WAIS.

(TIFF)

Table S3 Mean performance with effect sizes for
Wechsler Adult Intelligence Scale latent scores on a
subset of 59 Val/Val patients that share 84.98% of its
voxels with the full Val/Met patient group. g = general

intelligence, VC= verbal comprehension, PO=perceptual orga-

nization, WM=working memory, PS= processing speed.

(TIFF)
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